Skip to content

rs_workflows/flow_utils.md

<< Back to index

Utility module for the Prefect flows.

DprProcessIn dataclass

Input parameters for the 'dpr-process' flow

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
@dataclass
class DprProcessIn:  # pylint: disable=too-many-instance-attributes
    """
    Input parameters for the 'dpr-process' flow
    """

    env: FlowEnvArgs
    processor_name: DprProcessor
    processor_version: str
    dask_cluster_label: str
    s3_payload_file: str
    # 'pipeline' or 'unit' must be provided
    pipeline: str | None = None
    unit: str | None = None

    priority: Priority = Priority.LOW
    workflow_type: WorkflowType = WorkflowType.ON_DEMAND

    input_products: list[dict[str, tuple[str, str]]] = field(default_factory=list)
    generated_product_to_collection_identifier: list[dict[str, str | tuple[str, str]]] = field(default_factory=list)
    auxiliary_product_to_collection_identifier: dict[str, str] = field(default_factory=dict)

    processing_mode: list[ProcessingMode] = field(default_factory=list)
    start_datetime: datetime | None = None
    end_datetime: datetime | None = None
    satellite: str | None = None

    def __post_init__(self) -> None:
        # Enforce the "pipeline XOR unit" rule
        has_pipeline = bool(self.pipeline)
        has_unit = bool(self.unit)
        if has_pipeline == has_unit:
            raise ValueError("Exactly one of 'pipeline' or 'unit' must be provided.")

        # if not self.input_products:
        #    raise ValueError("'input_products' must contain at least one pystac.Item.")

        if not self.generated_product_to_collection_identifier:
            raise ValueError("'generated_product_to_collection_identifier' must not be empty.")

        if not self.auxiliary_product_to_collection_identifier:
            raise ValueError("'auxiliary_product_to_collection_identifier' must not be empty.")

DprProcessOut dataclass

Output parameters for the 'dpr-process' flow

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
202
203
204
205
206
207
208
209
@dataclass
class DprProcessOut:
    """
    Output parameters for the 'dpr-process' flow
    """

    status: bool
    product_identifier: list[Item] = field(default_factory=list)

FlowEnv

Prefect flow environment and reusable objects.

Attributes:

Name Type Description
owner_id str

User/owner ID

calling_span SpanContext | None

OpenTelemetry span of the calling flow, if any.

this_span SpanContext | None

Current OpenTelemetry span.

rs_client RsClient

RsClient instance

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class FlowEnv:
    """
    Prefect flow environment and reusable objects.

    Attributes:
        owner_id (str): User/owner ID
        calling_span (SpanContext | None): OpenTelemetry span of the calling flow, if any.
        this_span (SpanContext | None): Current OpenTelemetry span.
        rs_client (RsClient): RsClient instance
    """

    def __init__(self, args: FlowEnvArgs):
        """Constructor."""
        self.owner_id: str = args.owner_id
        self.calling_span: SpanContext | None = None
        self.this_span: SpanContext | None = None

        # Deserialize the calling span, if any
        if args.calling_span:
            self.calling_span = SpanContext(*args.calling_span)

        # Read prefect blocks into env vars
        prefect_utils.read_prefect_blocks(self.owner_id, _sync=True)  # type: ignore

        # Init opentelemetry traces
        init_opentelemetry.init_traces("rs.client")

        # Init the RsClient instance from the env vars
        self.rs_client = RsClient(
            rs_server_href=os.getenv("RSPY_WEBSITE"),
            rs_server_api_key=os.getenv("RSPY_APIKEY"),
            owner_id=self.owner_id,
            logger=get_run_logger(),  # type: ignore
        )

    def serialize(self) -> FlowEnvArgs:
        """Serialize this object with Pydantic."""

        # The serialized object will be used by a new opentelemetry span.
        # Its calling span will be either the current span, or the current calling span.
        new_calling_span = self.this_span or self.calling_span
        if new_calling_span:
            # Only keep the first n attributes, the other need custom serialization
            serialized_span = tuple(new_calling_span)[:3]
        else:
            serialized_span = None

        return FlowEnvArgs(owner_id=self.owner_id, calling_span=serialized_span)  # type: ignore

    @_agnosticcontextmanager
    def start_span(
        self,
        instrumenting_module_name: str,
        name: str,
    ) -> Iterator[Span]:
        """
        Context manager for creating a new main or child OpenTelemetry span and set it
        as the current span in this tracer's context.

        Args:
            instrumenting_module_name: Caller module name, just pass __name__
            name: The name of the span to be created (use a custom name)

        Yields:
            The newly-created span.
        """
        # Create new span and save it
        with init_opentelemetry.start_span(  # pylint: disable=contextmanager-generator-missing-cleanup
            instrumenting_module_name,
            name,
            self.calling_span,
        ) as span:
            self.this_span = trace.get_current_span().get_span_context()
            yield span

__init__(args)

Constructor.

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def __init__(self, args: FlowEnvArgs):
    """Constructor."""
    self.owner_id: str = args.owner_id
    self.calling_span: SpanContext | None = None
    self.this_span: SpanContext | None = None

    # Deserialize the calling span, if any
    if args.calling_span:
        self.calling_span = SpanContext(*args.calling_span)

    # Read prefect blocks into env vars
    prefect_utils.read_prefect_blocks(self.owner_id, _sync=True)  # type: ignore

    # Init opentelemetry traces
    init_opentelemetry.init_traces("rs.client")

    # Init the RsClient instance from the env vars
    self.rs_client = RsClient(
        rs_server_href=os.getenv("RSPY_WEBSITE"),
        rs_server_api_key=os.getenv("RSPY_APIKEY"),
        owner_id=self.owner_id,
        logger=get_run_logger(),  # type: ignore
    )

serialize()

Serialize this object with Pydantic.

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
117
118
119
120
121
122
123
124
125
126
127
128
129
def serialize(self) -> FlowEnvArgs:
    """Serialize this object with Pydantic."""

    # The serialized object will be used by a new opentelemetry span.
    # Its calling span will be either the current span, or the current calling span.
    new_calling_span = self.this_span or self.calling_span
    if new_calling_span:
        # Only keep the first n attributes, the other need custom serialization
        serialized_span = tuple(new_calling_span)[:3]
    else:
        serialized_span = None

    return FlowEnvArgs(owner_id=self.owner_id, calling_span=serialized_span)  # type: ignore

start_span(instrumenting_module_name, name)

Context manager for creating a new main or child OpenTelemetry span and set it as the current span in this tracer's context.

Parameters:

Name Type Description Default
instrumenting_module_name str

Caller module name, just pass name

required
name str

The name of the span to be created (use a custom name)

required

Yields:

Type Description
Span

The newly-created span.

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
@_agnosticcontextmanager
def start_span(
    self,
    instrumenting_module_name: str,
    name: str,
) -> Iterator[Span]:
    """
    Context manager for creating a new main or child OpenTelemetry span and set it
    as the current span in this tracer's context.

    Args:
        instrumenting_module_name: Caller module name, just pass __name__
        name: The name of the span to be created (use a custom name)

    Yields:
        The newly-created span.
    """
    # Create new span and save it
    with init_opentelemetry.start_span(  # pylint: disable=contextmanager-generator-missing-cleanup
        instrumenting_module_name,
        name,
        self.calling_span,
    ) as span:
        self.this_span = trace.get_current_span().get_span_context()
        yield span

FlowEnvArgs dataclass

Prefect flow environment arguments.

Attributes:

Name Type Description
owner_id str

User/owner ID (necessary to retrieve the user info: API key and OAuth2 cookie)

from the right Prefect block. NOTE

may be useless after each user has their own prefect

calling_span tuple

Serialized OpenTelemetry span of the calling flow, if any.

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
66
67
68
69
70
71
72
73
74
75
76
77
78
79
@dataclass
class FlowEnvArgs:
    """
    Prefect flow environment arguments.

    Attributes:
        owner_id: User/owner ID (necessary to retrieve the user info: API key and OAuth2 cookie)
        from the right Prefect block. NOTE: may be useless after each user has their own prefect
        server because there will be only one block.
        calling_span (tuple): Serialized OpenTelemetry span of the calling flow, if any.
    """

    owner_id: str
    calling_span: tuple[int, int, bool] | None = None

Priority

Bases: str, Enum

Priority for the cluster dask to be able to prioritise task execution.

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
34
35
36
37
38
39
40
41
class Priority(str, Enum):
    """
    Priority for the cluster dask to be able to prioritise task execution.
    """

    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"

ProcessingMode

Bases: str, Enum

List of mode to be applied when calling the DPR processor.

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
54
55
56
57
58
59
60
61
62
63
class ProcessingMode(str, Enum):
    """
    List of mode to be applied when calling the DPR processor.
    """

    NRT = "nrt"
    NTC = "ntc"
    REPROCESSING = "reprocessing"
    SUBS = "subs"
    ALWAYS = "always"

WorkflowType

Bases: str, Enum

Workflow type.

Source code in docs/rs-client-libraries/rs_workflows/flow_utils.py
44
45
46
47
48
49
50
51
class WorkflowType(str, Enum):
    """
    Workflow type.
    """

    BENCHMARKING = "benchmarking"
    ON_DEMAND = "on-demand"
    SYSTEMATIC = "systematic"